Variable forgetting factor mechanisms for diffusion recursive least squares algorithm in sensor networks
نویسندگان
چکیده
In this work, we present low-complexity variable forgetting factor (VFF) techniques for diffusion recursive least squares (DRLS) algorithms. Particularly, we propose low-complexity VFF-DRLS algorithms for distributed parameter and spectrum estimation in sensor networks. For the proposed algorithms, they can adjust the forgetting factor automatically according to the posteriori error signal. We develop detailed analyses in terms of mean and mean square performance for the proposed algorithms and derive mathematical expressions for the mean square deviation (MSD) and the excess mean square error (EMSE). The simulation results show that the proposed low-complexity VFF-DRLS algorithms achieve superior performance to the existing DRLS algorithm with fixed forgetting factor when applied to scenarios of distributed parameter and spectrum estimation. Besides, the simulation results also demonstrate a good match for our proposed analytical expressions.
منابع مشابه
Low Complexity and High speed in Leading DCD ERLS Algorithm
Adaptive algorithms lead to adjust the system coefficients based on the measured data. This paper presents a dichotomous coordinate descent method to reduce the computational complexity and to improve the tracking ability based on the variable forgetting factor when there are a lot of changes in the system. Vedic mathematics is used to implement the multiplier and the divider in the VFF equatio...
متن کاملRailway Wheelset Parameter Estimation Using Signals from Lateral Velocity Sensor
A type of parameter estimation technique based on the linear integral filter (LIF) method, the least-absolute error with variable forgetting factor (LAE+VFF) estimation method, is proposed in this paper to estimate the railway wheelset parameters modelled as a time-varying continuous-time (C-T) system. The inputs to the parameter estimator are the control signal and the railway wheelset system ...
متن کاملLow-Complexity Variable Forgetting Factor Constrained Constant Modulus RLS Algorithm for Adaptive Beamforming
In this paper, a recursive least squares (RLS) based blind adaptive beamforming algorithm that features a new variable forgetting factor (VFF) mechanism is presented. The beamformer is designed according to the constrained constant modulus (CCM) criterion, and the proposed adaptive algorithm operates in the generalized sidelobe canceler (GSC) structure. A detailed study of its operating propert...
متن کاملHarmonic Components Estimation in Power System Using Bacterial Foraging Optimization Algorithm and Stochastic Gradient Algorithm with Variable Forgetting Factor
ABSTRACT: In this paper, a hybrid configuration algorithm called stochastic gradient method with variable forgetting factor (SGVFF) is proposed to better estimate unknown parameters in a power system such as amplitude and phase of harmonics using variable forgetting factor following the bacterial foraging optimization algorithm (BFO). It must be mentioned that harmonic estimation is a nonlinear...
متن کاملDistributed and Cooperative Compressive Sensing Recovery Algorithm for Wireless Sensor Networks with Bi-directional Incremental Topology
Recently, the problem of compressive sensing (CS) has attracted lots of attention in the area of signal processing. So, much of the research in this field is being carried out in this issue. One of the applications where CS could be used is wireless sensor networks (WSNs). The structure of WSNs consists of many low power wireless sensors. This requires that any improved algorithm for this appli...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- EURASIP J. Adv. Sig. Proc.
دوره 2017 شماره
صفحات -
تاریخ انتشار 2017